Acta Cryst. (1961). 14, 90

Use of a two-circle device to obtain three-dimensional neutron diffraction data. Ву В.т. м. Wirlis, Atomic Energy Research Establishment, Harwell, Didcot, Berks., England

(Received 23 February 1960)

It has been customary in neutron diffraction work to use a pillar-shaped crystal to obtain two-dimensional $F^{\mathbf{2}}$ data, the long axis of the crystal corresponding to the zone axis of the reflexions to be examined (Bacon \& Pease, 1953; Atoji \& Rundle, 1958). As this long axis is normal to the plane containing the incident and reflected beams, a maximum counting rate is achieved while the possibility of extinction errors is minimized. The purpose of this note is to point out that, by mounting the crystal on a two-circle device placed on the central table of the spectrometer, three-dimensional data (or two-dimensional data about an arbitrary zone axis) can be obtained from a pillar-shaped crystal with approximately the same accuracy as for the conventional two-dimensional arrangement. The method has been used successfully in this daboratory for several months.

Fig. I. Diagram of the φ-, χ - and ω-circles.
The device constitutes the φ - and χ-circles of a threecircle diffractometer (Furnas \& Harker, 1955). χ is a vertical circle and φ a circle which rotates as a whole about the horizontal χ-axis (Fig. 1). The χ-circle and counter move independently round the third circle, ω, which is the large horizontal circle of the diffractometer. The crystal, mounted on a goniometer head attached to the φ-circle, is located at the common point of intersection of the φ-, χ - and ω-axes.

By appropriate adjustments of the three circles, the normal to any ($h k l$) plane is brought into the Bragg reflecting position in the equatorial plane, and the integrated intensity is then measured in the normal way by moving the counter round to the $2 \theta_{h k l}$ position. The stereogram in Fig. 2 illustrates the adjustments required. $O P$ represents the (hkl) normal initially, $R O$ the incident neutron beam and $\chi O \chi^{\prime}$ the χ-axis, set at an arbitrary angle to $R O$: it is required to move the pole P to P^{\prime}, where $O P^{\prime}$ is in the equatorial plane and at an angle $\pi / 2-\theta_{h k l}$ to $R O$. Initially, the φ-circle is moved round the χ-circle to make the φ-axis vertical. The φ-axis is then rotated through the angle $P Q$, moving P to Q, where Q is the point of intersection of the two small circles of centre O, radius $O P$ and centre χ^{\prime}, radius $\chi^{\prime} P^{\prime}$. Finally, the χ-axis is rotated through the angle $Q P^{\prime}$,

Fig. 2. Stereogram illustrating the rotations about the φ - and χ-axes necessary to bring the ($h k l$) normal, $O P$, to the reflecting position, $O P^{\prime}$, in the equatorial plane. $R O$ is the incident beam direction, $\chi O \chi^{\prime}$ is the χ-axis and the φ-axis is initially vertical.
moving Q to P^{\prime}. Clearly, the circle settings are not unique but depend on the arbitrary ω setting of the χ-circle. By mounting the crystal with its long direction along the φ-axis and by choosing the γ-axis perpendicular to the ($h k l$) normal in its reflecting position, $O P^{\prime}$, the path length of the bean inside the crystal is a minimum (Fig. 3). The ω setting is then $\theta_{h k l}$, and the φ and χ settings are given by

$$
\tan \varphi=\frac{V}{a b c}\left[\frac{k / b-l \cos \alpha / c}{h \sin ^{2} \alpha / a+k(\cos \alpha \cos \beta-\cos \gamma) / b+l(\cos \gamma \cos \alpha-\cos \beta) / c}\right]
$$

$$
\sin \chi=l d_{h k l} / c
$$

Fig. 3. Diagram showing the path of the beam inside the crystal. The cross-hatched region represents the crystal at $\chi=0$ with its long axis vertical; the vertically shaded region represents the crystal after it has been moved round the χ-circle to bring the ($h k l$) normal into the horizontal plane.
V is the volume of the unit cell and it is assumed that the c-axis of the crystal is along the φ-axis, that $\varphi=0$ corresponds to the a^{*}-axis in the plane of the χ-circle and that $\chi=0$ corresponds to the φ-axis vertical.

Thus by attaching a two-circle device, representing the χ - and φ-circles, to the existing ω-circle of a neutron diffraction spectrometer, it is possible to extend collection of F^{2} data to three dimensions. In essence, the method depends on the principle that a three-circle instrument not only allows any ($h k l$) plane to be brought into the reflecting position, but also allows rotation of the crystal about the normal to this plane to make the path length a minimum.

References

Atoji, M. \& Rundle, R. E. (1958). J. Chem. Phys. 29, 1306.

Bacon, G. E. \& Pease, R. S. (1953). Proc. Roy. Soc. A, 220, 397.
Furnas, T. C. \& Harker, D. (1955). Rev. Sci. Instrum. 26, 449.

Acta Cryst. (1961). 14, 91
Crystallographic data for certain amidinium carboxylates. By Olga Kennard and James Walker, National Institute for Medical Research, Mill Hill, London, England

(Received 9 May 1960)

During an investigation of the mechanism of salt formation between carboxylic acids and substances containing an unsubstituted amidinium group the crystallographic constants of a number of these salts were determined (Kennard \& Walker, 1954). Unit-cell dimensions were obtained from oscillation and Weissenberg photographs ($\lambda=1.5418 \AA$), except for the last two compounds listed below, where the θ method (Weisz, Cochran \& Cole, 1948) was used. Densities were determined with an accuracy of $\pm 0.5 \%$ by centrifuging the crystals in a continuousgradient density column (Low \& Richards, 1952). The three-dimensional structure analysis of S-methylthiuronium p-chlorobenzoate is being reported elsewhere (Kennard \& Walker, 1961).

> Benzamidine benzoate
> $\mathrm{C}_{6} \mathrm{H}_{5} \cdot \mathrm{C}(: \mathrm{NH}) \cdot \mathrm{NH}_{2}, \mathrm{C}_{6} \mathrm{H}_{5} \cdot \mathrm{CO}_{2} \mathrm{H}$

Benzamidine benzoate was prepared from benzamidine hydrochloride and sodium benzoate in aqueous solution (cf. Pinner, 1892). It crystallized from water as flat plates elongated along [001], with marked striations in this direction. The striations were traces of an excellent cleavage plane.

The refractive index for white light was $1 \cdot 680 \pm 5$ with the electric vector vibrating in the direction of elongation of the plates, and $1 \cdot 630 \pm 5$ at right angles to this direction.

$$
\begin{aligned}
& \text { Orthorhombic } \\
& \qquad \begin{array}{l}
a=28 \cdot 9(4), b=35 \cdot 8(6), c=9 \cdot 9(5) \AA, U=10326 \AA^{3} \\
\quad D_{m}=1 \cdot 25 \text { g.cm. } .^{-3}, Z=32, D_{x}=1 \cdot 25 \mathrm{~g} . \mathrm{cm} .^{-3}
\end{array}
\end{aligned}
$$

Space group Ccc2 with additional non-space-group absences. Absent spectra: $h k l$ when $h+k$ odd, but very few weak reflexions of the type $h+l$ odd or $k+l$ odd were observed. The $h k 0$ reflexions were with a few exceptions absent unless $h+k=4 n$. The $0 k l$ reflexions were absent unless $k=4 n, l=2 n$, and the $h 0 l$ reflexions if $h=4 n+1$ or $l=2 n+1$.

> 3,5-Dibromobenzamidine benzoate $\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{Br}_{2} . \mathrm{C}(: \mathrm{NH}) \cdot \mathrm{NH}_{2}, \mathrm{C}_{6} \mathrm{H}_{5} \cdot \mathrm{CO}_{2} \mathrm{H}$

3,5-Dibromobenzamidine benzoate was prepared from 3,5-dibromobenzamidine hydrochloride and sodium benzoate; it was recrystallized from water and had m.p. 228-229 ${ }^{\circ}$ (decomp.). (Found: C, 42.0; H, 2.9; N, 6.8. $\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{Br}_{2} \mathrm{~N}_{2}, \mathrm{C}_{7} \mathrm{H}_{6} \mathrm{O}_{2}$ requires $\mathrm{C}, 42 \cdot 0 ; \mathrm{H}, 3 \cdot 0 ; \mathrm{N}, 7 \cdot 0 \%$). The crystals were needle-shaped with diagonal extinction; they had faint striations and imperfect cleavage parallel to the needle axis.

$$
\begin{gathered}
\text { Triclinic } \\
\qquad \begin{array}{l}
a=15 \cdot 21, b=9 \cdot 64, c=12 \cdot 34 \AA \\
\alpha=110, \beta=110, \gamma=100 \cdot 7^{\circ} \\
U=1501 \AA^{3}, D_{m}=1 \cdot 755, Z=4, D_{x}=1.77 \text { g.cm. }
\end{array}
\end{gathered}
$$

$S p a c e$ group $P \mathbf{1}$ or $P \overline{1}$. No absences.

3,5-Dibromobenzamidine 3,5-dibromobenzoate $\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{Br}_{2} . \mathrm{C}(: \mathrm{NH}) . \mathrm{NH}_{2}, \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{Br}_{2} . \mathrm{CO}_{2} \mathrm{H}$

3,5-Dibromobenzamidine 3,5 -dibromobenzoate was obtained from 3,5-dibromobenzamidine hydrochloride and

